Friday, November 27, 2009

Woods

Wood is a hygroscopic substance. It has the ability to take in or give off moisture in the form of vapour. The water contained in wood exerts a vapour pressure of its own, which is determined by the maximum size of the capillaries filled with water at any time. If the water vapour pressure in the ambient space is lower than the vapour pressure within wood, desorption takes place. The largest sized capillaries, which are full of water at the time, empty first. The vapour pressure within the wood falls as water is successively contained in smaller and smaller sized capillaries. A stage is eventually reached when the vapour pressure within the wood equals the vapour pressure in the ambient space above the wood, and further desorption ceases. The amount of moisture that remains in the wood at this stage is in equilibrium with the water vapour pressure in the ambient space, and is termed the equilibrium moisture content or EMC (Siau, 1984). Because of its hygroscopicity, wood tends to reach a moisture content that is in equilibrium with the relative humidity and temperature of the surrounding air. The EMC of wood varies with the ambient relative humidity (a function of temperature) significantly, to a lesser degree with the temperature. Siau (1984) reported that the EMC also varies very slightly with species, mechanical stress, drying history of wood, density, extractives content and the direction of sorption in which the moisture change takes place (i.e. adsorption or desorption).

0 comments:


Blogspot Templates by Isnaini Dot Com. Powered by Blogger and Supported by Doocu.Com - Free PDF upload and share